Influence of Oil on Heat Transfer Characteristics of R410A Flow Boiling in Conventional and Small Size Microfin Tubes
نویسندگان
چکیده
In order to extend the existing heat transfer coefficient correlation of R410A-oil mixture flow boiling in conventional size (7.0 mm) microfin tube to be suitable for widely used small diameter tubes (4.0~5.0 mm), the experiments of R410A-oil mixture flow boiling inside three small diameter microfin tubes with different outside diameters of 4.0~5.0 mm and different microfin structures were performed. For the tested tubes with different diameter, the decrease of tube diameter may weaken the deterioration effect of oil on heat transfer at intermediate and high vapor qualities. For the fixed outside diameter microfin tubes with different microfin structures, larger fin height and contact area of liquid with tube wall may enhance the heat transfer for oil-free R410A, but result in smaller enhancement effect of oil at low vapor qualities and smaller deterioration effect of oil at intermediate and high vapor qualities for R410A-oil mixture. A general correlation to predict the heat transfer coefficients of R410A-oil mixture flow boiling inside conventional size and small diameter microfin tubes was developed, and it agrees with 94% of the experimental data of R410A-oil mixture in 4.0 mm ~ 7.0 mm microfin tubes within a deviation of ±30%.
منابع مشابه
Two Phase Heat Transfer Characteristics in a Vertical Small Diameter Tube at Sub Atmospheric Pressure
Two-phase heat transfer is experimentally examined through vertical small diameter tubes, D =1.45 and 2.8 mm using water under a pressure of 50 to 81 kPa and a natural circulation condition. The pool boiling correlation by Stephan-Abdelsalam and the thermosyphon boiling correlation by Imura, et al. predict the measured experimental data in the 2.8 mm tube with an error of -30%. A large heat tra...
متن کاملExperimental Investigation of Surface Roughness Effect on Flow Boiling in Internal Combustion Engine Water Jacket
The subjects of heat transfer and cooling system are very important topics in the Internal Combustion Engines (ICE). In modern cooling systems, low weight, small size and high compactness are the critical designing criteria that requires heat transfer enhancement. Boiling phenomenon which is occurred in the water jacket of the ICE is one of the methods to increase heat transfer in the coolant s...
متن کاملEffects of Rib Shapes on Heat Transfer Characteristics of Turbulent Flow of Al2O3-Water Nanofluid inside Ribbed Tubes
In this paper, convection heat transfer of Al2O3-water nanofluid turbulent flow through internally ribbed tubes with different rib shapes (rectangular, trapezoidal and semi-circular) is numerically investigated. For each rib shape, the optimum geometric ratio and volume fraction were calculated using entropy generation minimization technique. The governing equations in...
متن کاملExperimental Investigation on Heat Transfer of Silver-Oil Nanofluid in Concentric Annular Tube
In order to examine the laminar convective heat transfer of nanofluid, experiments carried out using silver-oil nanofluid in a concentric annulus with outer constant heat flux as boundary condition. Silver-oil nanofluid prepared by Electrical Explosion of Wire technique and observed no nanoparticles agglomeration during nanofluid preparation process and carried out experiments. The average size...
متن کاملNumerical Comparison of Turbulent Heat Transfer and Flow Characteristics of SiO2/Water Nanofluid within Helically Corrugated Tubes and Plain Tube
Turbulent heat transfer in Helically Corrugated Tubes (HCT) was numerically investigated for pure water and SiO2 nanofluid using Computational Fluid Dynamics (CFD). This study was carried out for different corrugating pitches (5, 7, 8 mm) and heights (0.5, 0.75, 1.25 mm) at various Reynolds numbers ranging from 5000 to 13300. The effect of nanoparticles on heat transfer augmentation for plain t...
متن کامل